Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38675617

RESUMEN

Nanoemulsions are gaining interest in a variety of products as a means of integrating easily degradable bioactive compounds, preserving them from oxidation, and increasing their bioavailability. However, preparing stable emulsion compositions with the desired characteristics is a difficult task. The aim of this study was to encapsulate the Tinospora cordifolia aqueous extract (TCAE) into a water in oil (W/O) nanoemulsion and identify its critical process and formulation variables, like oil (27-29.4 mL), the surfactant concentration (0.6-3 mL), and sonication amplitude (40% to 100%), using response surface methodology (RSM). The responses of this formulation were studied with an analysis of the particle size (PS), free fatty acids (FFAs), and encapsulation efficiency (EE). In between, we have studied a fishbone diagram that was used to measure risk and preliminary research. The optimized condition for the formation of a stable nanoemulsion using quality by design was surfactant (2.43 mL), oil concentration (27.61 mL), and sonication amplitude (88.6%), providing a PS of 171.62 nm, FFA content of 0.86 meq/kg oil and viscosity of 0.597 Pa.s for the blank sample compared to the enriched TCAE nanoemulsion with a PS of 243.60 nm, FFA content of 0.27 meq/kg oil and viscosity of 0.22 Pa.s. The EE increases with increasing concentrations of TCAE, from 56.88% to 85.45%. The RSM response demonstrated that both composition variables had a considerable impact on the properties of the W/O nanoemulsion. Furthermore, after the storage time, the enriched TCAE nanoemulsion showed better stability over the blank nanoemulsion, specially the FFAs, and the blank increased from 0.142 to 1.22 meq/kg oil, while TCAE showed 0.266 to 0.82 meq/kg.


Asunto(s)
Emulsiones , Tamaño de la Partícula , Extractos Vegetales , Tinospora , Agua , Emulsiones/química , Extractos Vegetales/química , Tinospora/química , Agua/química , Sonicación , Nanopartículas/química , Aceites/química , Tensoactivos/química
2.
Diagnostics (Basel) ; 13(22)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37998575

RESUMEN

The paper focuses on the hepatitis C virus (HCV) infection in Egypt, which has one of the highest rates of HCV in the world. The high prevalence is linked to several factors, including the use of injection drugs, poor sterilization practices in medical facilities, and low public awareness. This paper introduces a hyOPTGB model, which employs an optimized gradient boosting (GB) classifier to predict HCV disease in Egypt. The model's accuracy is enhanced by optimizing hyperparameters with the OPTUNA framework. Min-Max normalization is used as a preprocessing step for scaling the dataset values and using the forward selection (FS) wrapped method to identify essential features. The dataset used in the study contains 1385 instances and 29 features and is available at the UCI machine learning repository. The authors compare the performance of five machine learning models, including decision tree (DT), support vector machine (SVM), dummy classifier (DC), ridge classifier (RC), and bagging classifier (BC), with the hyOPTGB model. The system's efficacy is assessed using various metrics, including accuracy, recall, precision, and F1-score. The hyOPTGB model outperformed the other machine learning models, achieving a 95.3% accuracy rate. The authors also compared the hyOPTGB model against other models proposed by authors who used the same dataset.

3.
Biomimetics (Basel) ; 8(7)2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37999166

RESUMEN

This study introduces ETLBOCBL-CNN, an automated approach for optimizing convolutional neural network (CNN) architectures to address classification tasks of varying complexities. ETLBOCBL-CNN employs an effective encoding scheme to optimize network and learning hyperparameters, enabling the discovery of innovative CNN structures. To enhance the search process, it incorporates a competency-based learning concept inspired by mixed-ability classrooms during the teacher phase. This categorizes learners into competency-based groups, guiding each learner's search process by utilizing the knowledge of the predominant peers, the teacher solution, and the population mean. This approach fosters diversity within the population and promotes the discovery of innovative network architectures. During the learner phase, ETLBOCBL-CNN integrates a stochastic peer interaction scheme that encourages collaborative learning among learners, enhancing the optimization of CNN architectures. To preserve valuable network information and promote long-term population quality improvement, ETLBOCBL-CNN introduces a tri-criterion selection scheme that considers fitness, diversity, and learners' improvement rates. The performance of ETLBOCBL-CNN is evaluated on nine different image datasets and compared to state-of-the-art methods. Notably, ELTLBOCBL-CNN achieves outstanding accuracies on various datasets, including MNIST (99.72%), MNIST-RD (96.67%), MNIST-RB (98.28%), MNIST-BI (97.22%), MNST-RD + BI (83.45%), Rectangles (99.99%), Rectangles-I (97.41%), Convex (98.35%), and MNIST-Fashion (93.70%). These results highlight the remarkable classification accuracy of ETLBOCBL-CNN, underscoring its potential for advancing smart device infrastructure development.

4.
Biomimetics (Basel) ; 8(3)2023 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-37504202

RESUMEN

The virus that causes monkeypox has been observed in Africa for several years, and it has been linked to the development of skin lesions. Public panic and anxiety have resulted from the deadly repercussions of virus infections following the COVID-19 pandemic. Rapid detection approaches are crucial since COVID-19 has reached a pandemic level. This study's overarching goal is to use metaheuristic optimization to boost the performance of feature selection and classification methods to identify skin lesions as indicators of monkeypox in the event of a pandemic. Deep learning and transfer learning approaches are used to extract the necessary features. The GoogLeNet network is the deep learning framework used for feature extraction. In addition, a binary implementation of the dipper throated optimization (DTO) algorithm is used for feature selection. The decision tree classifier is then used to label the selected set of features. The decision tree classifier is optimized using the continuous version of the DTO algorithm to improve the classification accuracy. Various evaluation methods are used to compare and contrast the proposed approach and the other competing methods using the following metrics: accuracy, sensitivity, specificity, p-Value, N-Value, and F1-score. Through feature selection and a decision tree classifier, the following results are achieved using the proposed approach; F1-score of 0.92, sensitivity of 0.95, specificity of 0.61, p-Value of 0.89, and N-Value of 0.79. The overall accuracy of the proposed methodology after optimizing the parameters of the decision tree classifier is 94.35%. Furthermore, the analysis of variation (ANOVA) and Wilcoxon signed rank test have been applied to the results to investigate the statistical distinction between the proposed methodology and the alternatives. This comparison verified the uniqueness and importance of the proposed approach to Monkeypox case detection.

5.
Heliyon ; 9(7): e17622, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37424589

RESUMEN

The Internet of Things (IoT) is a network of smart gadgets that are connected through the Internet, including computers, cameras, smart sensors, and mobile phones. Recent developments in the industrial IoT (IIoT) have enabled a wide range of applications, from small businesses to smart cities, which have become indispensable to many facets of human existence. In a system with a few devices, the short lifespan of conventional batteries, which raises maintenance costs, necessitates more replacements and has a negative environmental impact, does not present a problem. However, in networks with millions or even billions of devices, it poses a serious problem. The rapid expansion of the IoT paradigm is threatened by these battery restrictions, thus academics and businesses are now interested in prolonging the lifespan of IoT devices while retaining optimal performance. Resource management is an important aspect of IIoT because it's scarce and limited. Therefore, this paper proposed an efficient algorithm based on federated learning. Firstly, the optimization problem is decomposed into various sub-problems. Then, the particle swarm optimization algorithm is deployed to solve the energy budget. Finally, a communication resource is optimized by an iterative matching algorithm. Simulation results show that the proposed algorithm has better performance as compared with existing algorithms.

6.
Biomimetics (Basel) ; 8(2)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37366836

RESUMEN

Metamaterials have unique physical properties. They are made of several elements and are structured in repeating patterns at a smaller wavelength than the phenomena they affect. Metamaterials' exact structure, geometry, size, orientation, and arrangement allow them to manipulate electromagnetic waves by blocking, absorbing, amplifying, or bending them to achieve benefits not possible with ordinary materials. Microwave invisibility cloaks, invisible submarines, revolutionary electronics, microwave components, filters, and antennas with a negative refractive index utilize metamaterials. This paper proposed an improved dipper throated-based ant colony optimization (DTACO) algorithm for forecasting the bandwidth of the metamaterial antenna. The first scenario in the tests covered the feature selection capabilities of the proposed binary DTACO algorithm for the dataset that was being evaluated, and the second scenario illustrated the algorithm's regression skills. Both scenarios are part of the studies. The state-of-the-art algorithms of DTO, ACO, particle swarm optimization (PSO), grey wolf optimizer (GWO), and whale optimization (WOA) were explored and compared to the DTACO algorithm. The basic multilayer perceptron (MLP) regressor model, the support vector regression (SVR) model, and the random forest (RF) regressor model were contrasted with the optimal ensemble DTACO-based model that was proposed. In order to assess the consistency of the DTACO-based model that was developed, the statistical research made use of Wilcoxon's rank-sum and ANOVA tests.

7.
Healthcare (Basel) ; 10(10)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36292343

RESUMEN

Early detection of high fall risk is an important process of fall prevention in hospitalized elderly patients. Hospitalized elderly patients can face several falling risks. Monitoring systems can be utilized to protect health and lives, and monitoring models can be less effective if the alarm is not invoked in real time. Therefore, in this paper we propose a monitoring prediction system that incorporates artificial intelligence. The proposed system utilizes a scalable clustering technique, namely the Catboost method, for binary classification. These techniques are executed on the Snowflake platform to rapidly predict safe and risky incidence for hospitalized elderly patients. A later stage employs a deep learning model (DNN) that is based on a convolutional neural network (CNN). Risky incidences are further classified into various monitoring alert types (falls, falls with broken bones, falls that lead to death). At this phase, the model employs adaptive sampling techniques to elucidate the unbalanced overfitting in the datasets. A performance study utilizes the benchmarks datasets, namely SERV-112 and SV-S2017 of the image sequences for assessing accuracy. The simulation depicts that the system has higher true positive counts in case of all health-related risk incidences. The proposed system depicts real-time classification speed with lower training time. The performance of the proposed multi-risk prediction is high at 87.4% in the SERV-112 dataset and 98.71% in the SV-S2017 dataset.

8.
Healthcare (Basel) ; 10(10)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36292517

RESUMEN

The number of diabetic patients is increasing yearly worldwide, requiring the need for a quick intervention to help these people. Mortality rates are higher for diabetic patients with other serious health complications. Thus, early prediction for such diseases positively impacts healthcare quality and can prevent serious health complications later. This paper constructs an efficient prediction system for predicting diabetes in its early stage. The proposed system starts with a Local Outlier Factor (LOF)-based outlier detection technique to detect outlier data. A Balanced Bagging Classifier (BBC) technique is used to balance data distribution. Finally, integration between association rules and classification algorithms is used to develop a prediction model based on real data. Four classification algorithms were utilized in addition to an a priori algorithm that discovered relationships between various factors. The named algorithms are Artificial Neural Network (ANN), Decision Trees (DT), Support Vector Machines (SVM), and K Nearest Neighbor (KNN) for data classification. Results revealed that KNN provided the highest accuracy of 97.36% compared to the other applied algorithms. An a priori algorithm extracted association rules based on the Lift matrix. Four association rules from 12 attributes with the highest correlation and information gain scores relative to the class attribute were produced.

9.
Contrast Media Mol Imaging ; 2022: 5913905, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35919503

RESUMEN

In the bone marrow, plasma cells are made up of B lymphocytes and are a type of WBC. These plasma cells produce antibodies that help to keep bacteria and viruses at bay, thus preventing inflammation. This presents a major challenge for segmenting blood cells, since numerous image processing methods are used before segmentation to enhance image quality. White blood cells can be analyzed by a pathologist with the aid of computer software to identify blood diseases accurately and early. This study proposes a novel model that uses the ResNet and UNet networks to extract features and then segments leukocytes from blood samples. Based on the experimental results, this model appears to perform well, which suggests it is an appropriate tool for the analysis of hematology data. By evaluating the model using three datasets consisting of three different types of WBC, a cross-validation technique was applied to assess it based on the publicly available dataset. The overall segmentation accuracy of the proposed model was around 96%, which proved that the model was better than previous approaches, such as DeepLabV3+ and ResNet-50.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador , Procesamiento de Imagen Asistido por Computador/métodos , Leucocitos , Programas Informáticos
10.
Contrast Media Mol Imaging ; 2022: 9171343, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35800239

RESUMEN

The most common human parasite as per the medical experts is the malarial disease, which is caused by a protozoan parasite, and Plasmodium falciparum, a common parasite in humans. A microscopist with expertise in malaria diagnosis must conduct this complex procedure to identify the stages of infection. This epidemic is an ongoing disease in some parts of the world, which is commonly found. A Kaggle repository was used to upload the data collected from the NIH portal. The dataset contains 27558 samples, of which 13779 samples carry parasites and 13779 samples do not. This paper focuses on two of the most common deep transfer learning methods. Unlike other feature extractors, VGG-19's fine-tuning and pretraining made it an ideal feature extractor. Several image classification models, including VGG-19, have been pretrained on larger datasets. Additionally, deep learning strategies based on pretrained models are proposed for detecting malarial parasite cases in the early stages, in addition to an accuracy rating of 98.34 ∗ 0.51%.


Asunto(s)
Malaria Falciparum , Malaria , Parásitos , Animales , Simulación por Computador , Humanos , Malaria/diagnóstico , Malaria/parasitología , Malaria Falciparum/diagnóstico , Malaria Falciparum/parasitología , Plasmodium falciparum
11.
Comput Intell Neurosci ; 2022: 3464524, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35755767

RESUMEN

In today's modern era, e-commerce is making headway through the process of bringing goods within everyone's grasp. Consumers are not even required to step out of the comfort of their homes for buying things, which makes it very convenient for them. Moreover, there is a wide variety of brands to choose from. Since more customers depend on online shopping platforms these days, the value of ratings is also growing. To buy these products, people rely solely on the reviews that are being provided about the products. To analyze these reviews, sentiment analysis needs to be performed, which can prove useful for both the buyers and the manufacturer. This paper describes the process of sentiment analysis and its requirements. In this paper, Amazon Review dataset 2018 has been used for carrying out our research and Long Short-Term Memory (LSTM) has been combined with word2vec representation, resulting in improving the overall performance. A gating mechanism was used by LSTM during the training process. The proposed LSTM model was evaluated on four performance measures: accuracy, precision, recall, and F1 score, and achieved overall higher results when compared with other baseline models.


Asunto(s)
Memoria a Corto Plazo , Análisis de Sentimientos , Comercio , Comportamiento del Consumidor , Humanos , Publicaciones
12.
Healthcare (Basel) ; 10(6)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35742039

RESUMEN

Pneumonia is a common disease that occurs in many countries, more specifically, in poor countries. This disease is an obstructive pneumonia which has the same impression on pulmonary radiographs as other pulmonary diseases, which makes it hard to distinguish even for medical radiologists. Lately, image processing and deep learning models are established to rapidly and precisely diagnose pneumonia disease. In this research, we have predicted pneumonia diseases dependably from the X-ray images, employing image segmentation and machine learning models. A public labelled database is utilized with 4000 pneumonia disease X-rays and 4000 healthy X-rays. ImgNet and SqueezeNet are utilized for transfer learning from their previous computed weights. The proposed deep learning models are trained for classifying pneumonia and non-pneumonia cases. The following processes are presented in this paper: X-ray segmentation utilizing BoxENet architecture, X-ray classification utilizing the segmented chest images. We propose the improved BoxENet model by incorporating transfer learning from both ImgNet and SqueezeNet using a majority fusion model. Performance metrics such as accuracy, specificity, sensitivity and Dice are evaluated. The proposed Improved BoxENet model outperforms the other models in binary and multi-classification models. Additionally, the Improved BoxENet has higher speed compared to other models in both training and classification.

13.
Comput Intell Neurosci ; 2022: 3922763, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35655511

RESUMEN

Due to the plasmodium parasite, malaria is transmitted mostly through red blood cells. Manually counting blood cells is extremely time consuming and tedious. In a recommendation for the advanced technology stage and analysis of malarial disease, the performance of the XG-Boost, SVM, and neural networks is compared. In comparison to machine learning models, convolutional neural networks provide reliable results when analyzing and recognizing the same datasets. To reduce discrepancies and improve robustness and generalization, we developed a model that analyzes blood samples to determine whether the cells are parasitized or not. Experiments were conducted on 13,750 parasitized and 13,750 parasitic samples. Support vector machines achieved 94% accuracy, XG-Boost models achieved 90% accuracy, and neural networks achieved 80% accuracy. Among these three models, the support vector machine was the most accurate at distinguishing parasitized cells from uninfected ones. An accuracy rate of 97% was achieved by the convolution neural network in recognizing the samples. The deep learning model is useful for decision making because of its better accuracy.


Asunto(s)
Aprendizaje Profundo , Parásitos , Animales , Aprendizaje Automático , Redes Neurales de la Computación , Máquina de Vectores de Soporte
14.
Comput Intell Neurosci ; 2022: 7882924, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35634047

RESUMEN

In computer vision and medical image processing, object recognition is the primary concern today. Humans require only a few milliseconds for object recognition and visual stimulation. This led to the development of a computer-specific pattern recognition method in this study for identifying objects in medical images such as brain tumors. Initially, an adaptive median filter is used to remove the noise from MRI images. Thereafter, the contrast image enhancement technique is used to improve the quality of the image. To evaluate the wireframe model, the cellular logic array processing (CLAP)-based algorithm is then applied to images. The basic patterns of three-dimensional (3D) images are then identified from the input image by scanning the whole image. The frequency of these patterns is also used for object classification. A deep neural network is then utilized for the classification of brain tumor. In the proposed model, the syntactic pattern recognition technique is used to find the feature vector and 3D AlexNet is used for brain tumor classification. To evaluate the performance of the proposed work, three benchmark brain tumor datasets are used, i.e., Figshare, Brain MRI Kaggle, and Medical MRI datasets and BraTS 2019 dataset. The comparative analyses reveal that the proposed brain tumor classification model achieves significantly better performance than the existing models.


Asunto(s)
Neoplasias Encefálicas , Redes Neurales de la Computación , Algoritmos , Neoplasias Encefálicas/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Percepción Visual
15.
Bioengineering (Basel) ; 10(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36671591

RESUMEN

Diagnosing a brain tumor takes a long time and relies heavily on the radiologist's abilities and experience. The amount of data that must be handled has increased dramatically as the number of patients has increased, making old procedures both costly and ineffective. Many researchers investigated a variety of algorithms for detecting and classifying brain tumors that were both accurate and fast. Deep Learning (DL) approaches have recently been popular in developing automated systems capable of accurately diagnosing or segmenting brain tumors in less time. DL enables a pre-trained Convolutional Neural Network (CNN) model for medical images, specifically for classifying brain cancers. The proposed Brain Tumor Classification Model based on CNN (BCM-CNN) is a CNN hyperparameters optimization using an adaptive dynamic sine-cosine fitness grey wolf optimizer (ADSCFGWO) algorithm. There is an optimization of hyperparameters followed by a training model built with Inception-ResnetV2. The model employs commonly used pre-trained models (Inception-ResnetV2) to improve brain tumor diagnosis, and its output is a binary 0 or 1 (0: Normal, 1: Tumor). There are primarily two types of hyperparameters: (i) hyperparameters that determine the underlying network structure; (ii) a hyperparameter that is responsible for training the network. The ADSCFGWO algorithm draws from both the sine cosine and grey wolf algorithms in an adaptable framework that uses both algorithms' strengths. The experimental results show that the BCM-CNN as a classifier achieved the best results due to the enhancement of the CNN's performance by the CNN optimization's hyperparameters. The BCM-CNN has achieved 99.98% accuracy with the BRaTS 2021 Task 1 dataset.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...